

复合钙离子电极说明书

电极说明书可以帮助您正确使用和维护电极,并对 可能出现的问题进行了详细解答。请仔细阅读并妥 善保管。

奥豪斯仪器(常州)有限公司 常州市河海西路 538 号 22 号楼

邮编: 213125 400-821-7188 www.ohaus.com

P/N 30309570 A© 2016 Ohaus Corporation, All rights reserved.

目录

1.	简介与订货信息	\ 1
2.	电极参数与特性	1
	2.1 电极参数	1
	2.2 电极特性	2
3.	电极使用操作	4
	3.1 实验所需设备	与溶液4
	3.2 电极准备	4
	3.3 检查电极性能	5
	3.4 样品要求与测	量6
	3.5 保存与维护	9
4	学口问题	٥

1. 简介与订货信息

钙离子电极是一种 PVC 膜的离子选择电极,用于测试水中游离的钙离子,能够做到简单、 准确和经济。

钙离子复合电极包括了参比电极,测量时无需 单独的参比电极。

电极型号	订货号	电极描述
STISE28	30309568	凝胶复合钙离子电极

2. 电极参数与特性

2.1 电极参数

接口:	BNC
温度范围:	0~40°C
参比电极:	凝胶
电缆长度:	1m
电极杆长度:	120 mm
电极杆直径:	12 mm
电极膜材料:	PVC 膜
电极电阻:	1~4 ΜΩ
重复性:	± 4%
测量范围:	1M~ 5x10 ⁻⁷ M
pH 范围:	2.5~11
最少样品体积:	50ml 烧杯中 5ml 以上

*产品技术规格更改,恕不另行通知

2.2 电极特性

1. 电极响应时间

电极的响应时间指达到稳定电位值 99%所需 要的时间,此时间根据样品溶液浓度的大小而 不同。

当由低浓度到高浓度检测时,响应时间约 1 分钟;当由高浓度到低浓度检测时,一般需时几分钟或更长。

1) 重复性

检测的重复性受到温度波动、漂移和噪声等因 素的影响。在电极工作范围内,重复性与浓度 无关。

若每小时校准一次,电极直接测量重复性约 ±4%。

2) 电极寿命

常规实验操作,每个敏感部件可以使用大约 3~6个月,敏感部件(多聚物电极膜)的实际 寿命由所测试样品类型所决定。当电极的斜率 下降,读数漂移,重复性差,对低浓度样品响 应时间非常长,表示敏感膜可能老化了,可能 需要更换电极了。更换前,请确认是敏感部件 造成了电极的故障。

3) 温度影响

温度的变化会影响电极的电位,所以样品和标 准液之间的温差不能超过±1°C。

测量钙离子 10⁻³ mol/L 的样品时,温度每变化 1°C 将会造成 2%的测量误差。

由于参比电极的溶解平衡会随温度缓慢变化,因此参比电极的绝对电位随温度也缓慢变化。 正如 Nernst 方程式中的影响因子"S",钙离子 电极的斜率会随温度的改变而改变。如果温度 有变化,仪表和电极均需重新校准。

不同温度下电极斜率的理论值见下表,如样品

温度与室温差异较大,需要用与样品温度相同 的标准液进行校准。

温度(°C)	斜率(mV)
0	27.1
10	28.1
20	29.1
25	29.6
30	30.1
40	31.1
50	32.1

4) 干扰物

对钙离子测定会产生 10%误差的干扰离子浓度如下:

干扰离	10 ⁻⁴ M	10 ⁻³ M	10 ⁻² M
子 (M)	Ca ²⁺	Ca ²⁺	Ca ²⁺
Pb ²⁺	1.0 x10 ⁻⁶	1.0 x 10 ⁻⁵	1.0 x 10 ⁻⁴
Hg ²⁺	4.0 x 10 ⁻⁴	4.0 x 10 ⁻³	4.0 x 10 ⁻²
Sr ²⁺	6.0 x 10 ⁻⁴	6.0 x 10 ⁻³	6.0 x 10 ⁻²
Fe ²⁺	2.0 x 10 ⁻³	2.0 x 10 ⁻²	2.0 x 10 ⁻¹
Cu ²⁺	4.0 x 10 ⁻³	4.0 x 10 ⁻²	4.0 x 10 ⁻¹
Ni ²⁺	5.0 x 10 ⁻³	5.0 x 10 ⁻²	5.0 x 10 ⁻¹
Ba ²⁺	0.07	0.7	7.0
Zn^{2+}	0.1	1.0	10
Mg ²⁺	0.1	1.0	10
H ⁺	4.0 x 10 ⁻⁴	4.0 x 10 ⁻³	4.0 x 10 ⁻²
NH ₄ ⁺	0.02	0.2	2.0
Na ⁺	0.02	0.2	2.0
Tris ⁺	0.03	0.3	3.0
Li ⁺	0.03	0.3	3.0
K ⁺	0.04	0.4	4.0

3. 电极使用操作

3.1 实验所需设备与溶液

离子电极校准和样品检测操作需要如下设备与溶液:

- 1) ST5000i 离子计
- 2) STISE28 复合钙离子电极
- 3) 磁力搅拌器
- 4) 容量瓶、量筒、烧杯、移液器等实验 器皿
- 5) 蒸馏水或去离子水
- 6) 钙离子标准液

配制标准液最好的方法是采用逐级稀释。逐级稀释指使用容量瓶稀释初始配制的标准液,得到第二个标准液。再稀释第二个标准液,配制得到第三个标准液。以此类推,直到获得所需要的标准液;请参见 3.4。

电极空白电位:不高于-70 mV。 常见电极标液浓度对应的电极标定 mV 范围及 内阻值:

10 ppm	100 ppm	1000 ppm	内阻
30 ± 20	58 ± 20	86 ± 20	1~4
(mV)	(mV)	(mV)	МΩ

离子强度调节剂 (ISA)

(Ionic Strength Adjustment)为离子强度调节剂,用于提供稳定的背景离子强度,测量样品时也需添加 ISA, 其成分为: 4 M KCI。

3.2 电极准备

电极校准或使用前,需在做一些准备操作:

- 将电极头部的保护帽去除。注意:不要用手指碰到敏感部位。
- 2) 该电极为不可充复合电极,参比液为 凝胶且密封,不需要填充液。
- 3) 使用前,将电极前端浸在去离子水中 10分钟到2小时,用去离子水反复清 洗电极,直到空白电位稳定,用纸吸 干,不要擦干。
- 4) 然后浸在稀释的 0.001M 钙离子溶液 中直至准备使用。

3.3 检查电极性能

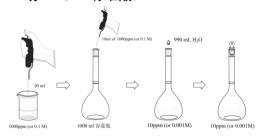
连接电极和仪表。

- 1) 配置低浓度的钙离子标液,测量得到 E1 值。 100ml 纯水+2ml ISA 溶液 + 1ml 的 1000ppm 的钙离子标液,在 150ml 以上大小的烧杯中,搅拌均 匀;用复合钙离子电极 STISE28 测量 得到稳定的读数值 E1。
- 2) 配置高浓度的钙离子标液,测量得到 E2 值。加入 10ml 的 1000ppm 的钙 离子标液到 E1 的溶液,搅拌均匀;用 STISE28 测量得到稳定的读数 E2。
- 3) 计算两个读数的差值, E2-E1 即为该 电极的斜率, 此差值在 27~30mV (25°C)时,说明标定电极性能合 格。
- 4) 如果标定结果不理想,可对电极头放

在标准液中浸泡活化处理后再做标 定。如仍不理想则需购买新电极。

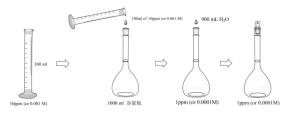
3.4 样品要求与测量

钙离子电极外壳的材质是环氧树脂,能抵抗无 机溶液的腐蚀。电极能间歇应用于含甲醇的溶 液。

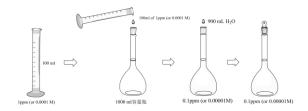

在电极使用前用纯水清洗电极头。使用前请先 标定确定电极性能合格。

1) 梯度标准液的配置

标准液配置建议采用逐级稀释的方法。逐级稀释是指使用容量瓶稀释初始高浓度的标液,得到第二个标准溶液。再稀释第二个浓度标准溶液,配置得到第三个标准溶液。以此类推,直到获得所需要的标准液。


配置实例步骤如下:

i. 配置 10ppm 或 1x10⁻³M 钙离子标准溶液: 用移液管或者移液器从 1000ppm 或者 0.1M 的钙离子标液中吸取 10ml, 然后将此 10ml 标准液移入 1000ml 容量瓶中,添加 990ml 的去离子水,稀释至容量瓶的刻度线处。混合摇匀容量瓶中的溶液即可得 10ppm或 1x10⁻³M 标准液。



ii. 配置 1ppm 或 1x10⁻⁴M 钙离子标准溶

液: 从步骤 i 中配置的标准液中按下图 移取出 100ml 标准液置入 1000ml 容量瓶中,然后添加 900ml 的去离子水,稀释至容量瓶的刻度线处。混合摇匀容量瓶中的溶液即可得 1ppm 或1x10⁻⁴M 标准液。

iii. 配置 0.1ppm 或 1x10⁻⁵M 钙离子标准溶液: 从步骤 ii 中配置的标准液中按下图移取出 100ml 标准液置入 1000ml 容量瓶中,然后添加 900ml 的去离子水,稀释至容量瓶的刻度线处。混合摇匀容量瓶中的溶液即可得到 0.1ppm或 1x10⁻⁵M 标准液。

2) 样品的配置

- i. 将上述配置的各浓度钙离子标准液量 取 50ml +1ml ISA 倒入 150ml 塑料烧 杯中,混合均匀待测。
- ii. 同样量取 50ml 样品 +1ml ISA 于 150ml 塑料烧杯中,混合均匀待测。

3) 测量

- i. 如是 ST5000i 仪表,可直读样品离子 浓度。ST3100, ST2100 或 ST300 时,请选择仪表的电位 mV 模式。
- ii. 将钙离子电极用蒸馏水清洗,吸干水 分后浸入已经配置好的浓度最低标准 液中,待读数稳定后,记录电位值和 相应的标准液浓度。
- iii. 用蒸馏水冲洗电极后吸干水分,将电极浸入浓度高些的标准液中。待读数稳定后记录电位值和相应的标准液浓度。以此类推,依次测量各个浓度的标准液和其电位值。
- iv. 使用 excel 或者其他作图软件,以浓度负对数为 x 轴,mV 值作为 y 轴绘得线性曲线,此即工作曲线。
 - v. 用蒸馏水清洗电极,吸干水分后浸入 样品中。待读数稳定后,记录电位 值。
- vi. 使用步骤 iv 中的工作曲线,计算得到 样品浓度。

注意: 所有的分析步骤中, 样品和标准液在测量前必须加入 ISA。样品和标准液应该处于同一温度下。

测量样品时也需先测量低浓度样品,后测量高浓度样品。否则需在纯水中浸泡较长时间以清除影响。样品中需添加 ISA 以调节离子强度获得准确测量值。

在测定低浓度的钙离子时样品时,也可以采用 标准加入法。

3.5 保存与维护

- 1) 电极测量间隔在半周内,可保存在稀 释的钙离子标准溶液中,建议标液浓 度 10⁻⁴ M 即可。保存液中不可加入 ISA。
- 2) 若电极保存超过一周,用蒸馏水清洗电极,吸干水分,电极干燥保存。

4. 常见问题

测量中如出现问题,一般最常见的问题是电极 受到污染,解决办法为:

- 1) 蒸馏水/去离子水反复冲洗电极。
- 2) 重新检查电极性能,看是否合格。
- 3) 如电极检查合格,但仍然测量有问题,可能是样品中有特定干扰物(如络合剂),或者测量方法/操作方法错误。